Появление идей об эволюции. Становление и развитие эволюционных идей

Эволюцио́нное уче́ние - система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих её биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной. Первые эволюционные идеи выдвигались уже в античности, но только труды Чарлза Дарвина сделали эволюционизм фундаментальной концепцией биологии. Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению ученых не подвергается, так как имеется огромное число подтверждающих научных фактов и теорий.

Эволюционное учение зародилось в античных философских системах, идеи которых, в свою очередь, коренились в космологических мифах.

Анаксимандр считал, что Человек же будто бы возник из рыбы или похожего на рыбу животного. Несмотря на оригинальность, рассуждения Анаксимандра чисто умозрительны и не подкреплены наблюдениями. Другой античный мыслитель, Ксенофан, уделял наблюдениям больше внимания. Так, он отождествлял окаменелости, что находил в горах, с отпечатками древних растений и животных. Из этого он заключал, что суша некогда опускалась в море.

Единственным автором, у которого можно найти идею постепенного изменения организмов, был Платон. В своем диалоге «Государство» он выдвинул печально знаменитое предложение: улучшение породы людей путём отбора лучших представителей.

С подъёмом уровня научного знания после «веков мрака» раннего Средневековья эволюционные идеи вновь начинают проскальзывать в трудах учёных, теологов и философов. Альберт Великий впервые отметил самопроизвольную изменчивость растений, приводящую к появлению новых видов. Примеры, когда-то приведенные Теофрастом, он охарактеризовал как трансмутацию одного вида в другой. Сам термин, очевидно, был взят им из алхимии. В XVI веке были переоткрыты ископаемые организмы, но только к концу XVII века мысль, что это не «игра природы», не камни в форме костей или раковин, а остатки древних животных и растений, окончательно завладела умами.

Как видим, дальше высказывания разрозненных идей об изменчивости видов дело не заходило. Эта же тенденция продолжалась и с наступлением Нового времени. Так Френсис Бэкон, политик и философ предполагал, что виды могут изменяться, накапливая «ошибки природы». Этот тезис снова, как и в случае с Эмпедоклом, перекликается с принципом естественного отбора, но об общей теории нет пока и слова.

Идеи ограниченного эволюционизма были развиты Лейбницем, Карлом Линнеем и Бюффоном. Вычисленный Бюффоном возраст Земли составлял 75 тысяч лет. Описывая виды животных и растений, Бюффон заметил, что наряду с полезными признаками у них имеются и такие, которым невозможно приписать какую-либо полезность.

Ламарк считал, что Бог создал лишь материю и природу; все остальные неживые и живые объекты возникли из материи под воздействием природы. Он считал, что движущим фактором эволюции может быть «упражнение» или «неупражнение» органов, зависящее от адекватного прямого влияния среды.

Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина. Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении.

Дарвин не только дал теоретические выкладки естественного отбора, но и показал на фактическом материале эволюцию видов в пространстве

В середине XX века на основе теории Дарвина сформировалась синтетическая теория эволюции (сокращённо СТЭ). СТЭ является в настоящее время наиболее разработанной системой представлений о процессах видообразования. Основой для эволюции по СТЭ является динамика генетической структуры популяций. Основным движущим фактором эволюции считается естественный отбор. Однако, наука не стоит на месте и, достигнутые передовыми теоретическими разработками современнейшие положения отличаются от первоначальных постулатов синтетической теории эволюции. Существует также группа эволюционных представлений, согласно которым видообразование (ключевой момент биологической эволюции) происходит быстро - за несколько поколений. При этом влияние каких-либо длительно действующих эволюционных факторов исключается (кроме отсекающего отбора). Подобные эволюционные воззрения называются сальтационизмом.

Конец работы -

Эта тема принадлежит разделу:

Понятие науки, классификация наук. Особенности научного знания

Наука это и итог познания мира система проверенных на практике достоверных знаний и в то же время особая область деятельности духовного.. во первых под наукой имеют в виду особый вид человеческой деятельности.. различают субъект познания и объект познания можно сказать что подлинным субъектом познания в каждую эпоху является..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Философия и наука. Проблема взаимосвязи философии и науки
Философия на протяжении всего своего развития была связана с наукой, хотя сам характер этой связи, а точнее, соотношение философии и науки с течением времени менялось. На начальном этапе ф

Наука, паранаука, квазинаука, лженаука
Наука - это система проверенных на практике достоверных знаний. Псевдонаука - деятельность, имитирующая науку, но по сути таковой не являющаяся. Главное отличие псевдонаук

Методы эмпирического исследования (наблюдение, эксперимент, измерение)
Наблюдение - это преднамеренное и целенаправленное восприятие явлений и процессов без прямого вмешательства в их течение, подчиненное задачам научного исследования. Основные тре

Структура и функции научной теории. Познавательная ценность научной теории
Научная теория - это система знаний, описывающая и объясняющая определенную совокупность явлений, дающая обоснование всех выдвинутых положений и сводящая открытые в данной области законы к единому

Становление науки в античности
«Страна происхождения» науки в европейском понимании - Древняя Греция. Для того чтобы стать научным, знание должно оторваться от практических запросов и приобрести свою теоретическую форму выражени

Наука средневекового периода исторического развития
Культура той или иной эпохи обусловливает характер мировоззрения и предъявляет свои требования к научному знанию. В Средние века науке были присущи теологизм, схоластика, догматизм; она обслуживала

Развитие науки в эпоху возрождения и нового времени
Основным методом познания и эпоху Возрождения становится опыт, подразумевающий союз разума и чувств, настроенных на созерцание природы, которая отныне служит единственным источником подлинной мудро

Зарождение, формирование и кризис механистической картины мира (17-18 в.в.)
Конструктивный характер новоевропейской науки выразил Г. Галилей, вводя метод идеализаций. Критикуя установки средне­вековой культуры и ее «Кумира» Аристотеля, Галилей раскрывает конструктивно-твор

Логика научного открытия в учениях Ф. Бэкона и Р. Декарта
Бэкон видел цель научного поиска в обогащении человеческой жизни новыми открытиями и благами. Однако знание может стать силой только в том случае, если оно материально воплотится в технические изоб

Образ науки в концепции логического позитивизма. Принцип верификации
Философско-методологическая концепция Венского кружка получила наименование логического позитивизма, или неопозитивизма (третий позитивизм), ибо его члены вдохновлялись как идеями О. Конта и Э. Мах

Принцип верификации
Принцип верификации предусматривал признание обладающими научной значимостью только те знания, содержание которых можно обосновать протокольными предложениями. Поэтому факты науки в доктринах позит

Концепция роста научного знания
Для Поппера рост знания не является повторяющимся или кумулятивным процессом, он есть процесс устранения ошибок, дарвиновский отбор. «Когда я говорю о росте научного знания, я имею в виду не накопл

Принцип фальсификации
В 1935 г. в Вене была опубликована книга Поппера “Логика научного исследования”. Касаясь в ней многих разных проблем теории познания, Поппер сосредоточил внимание на опровержениях двух главных усто

Зрелая наука
На смену допарадигмальной науки приходит, по мнению Куна, зрелая наука. Зрелая наука характеризуется тем, что в данный момент в ней существует не более одной общепринятой парадигмы. Первон

Нормальная наука
"Нормальной наукой" Кун называет исследование, прочно опирающееся на одно или несколько прошлых научных достижений, которые в течение некоторого времени признаются определенным научным со

Аномалии и кризис в науке
Аномалия появляется только на фоне парадигмы. Чем более точна и развита парадигма, тем более чувствительным индикатором она выступает при обнаружения аномалии, что тем самым приводит к изменению в

Революция в науке
Научная революция, в отличие от периода постепенного накопления (кумуляции) знаний, рассматривается как такой некумулятивный эпизод развития науки, во время которого старая парадигма замещается пол

Концепция развития науки И. Лакатоса
Лакатос считает, что выбор научным сообществом одной из многих конкурирующих исследовательских программ может и должен осуществляться рационально, то есть на основе четких рациональных критериев.

Проблема истинности научного знания. Основные концепции истины в науке
Вопрос об истине науке возник на рубеже 17 вв. Истина - это адекватная информация об объекте, получаемая посредством его чувственного или интеллектуального постижения либо

Появление и развитие техники с древних времен и до эпохи Нового времени
Возникновение элементов научно-технического знания в древних культурах. Технические знания в древних культурах представлял и собой религиозно-мифологическое осмысление практической деятель

Развитие техники с эпохи нового времени и до наших дней
Научная революция XVI I в. знаменуется становлением экспериментального метода и математизацией естествознания как предпосылки приложения научных результатов в технике. Техника выступает как объект

Особенности технических наук
Техника – (техно – искусство, мастерство, умение греч.) (1) совокупность устройств, предметов, артефактов; (2) совокупность различных видов деятельности, направленных на из

Понятие техники. Проблема взаимосвязи науки и техники
Понятие техники исторически изменяло свое со­держание, и предложено довольно много определений, отража­ющих тот или иной ее аспект. Например, техника это: - ремесло, искусство, мастерство

Понимание сущности техники в концепциях Х. Ортеги-и-Гассета и Ф. Дессауэра
Хосе Ортега-и-Гассет - первый обратившийся к проблематике философии техники. Согласно Ортеге современная техника создала уникальную проблему: отмиранию и иссяканию способно

Понимание сущности техники в концепциях О. Шпенглера и М. Хайдеггера
О. Шпенглер: . Жизнь борьба, решающую роль играет тактика жизни. Техника – тактика всей жизни в целом, представляет собой внутреннюю форму способа борьбы, которые


Социальный институт науки начал формировать­ся в Западной Европе в XVI-XVII вв. Однако это явление восхо­дит к древним культурам. Первые научные школы возникли на Древнем Востоке, в Древней Греции

Коллективная деятельность в науке и ее функции
В жизни общества во взаимодействии людей есть устойчивые отношения. Все общественные сферы, кот. поддерживают, упорядочивают и организуют отношения между людьми называются социальными институтами.

Научно-техническая революция и особенности современной техники
С середины XIX в. начинается процесс слияния, с одной стороны, науки и техники, с другой стороны, техники и производства. И выпуск товаров приобретает массовый характер. Результатом

Место и роль науки в современном обществе. Сциентизм и антисциентизм
Наука нуждается в поддержке общества. Если в обществе фундаментальные ценности окажутся несовместимыми со специфическими ценностями науки, то социальный институт науки, пожалуй, не сможет существов

Сциентизм и антисциентизм
В то время как сциентизм базируется на абсолютизации рациоонально-теоретических компонентов знания, антисциентизм опира­ется на ключевую роль этических, правовых, культурных ценностей по отношению

Особенности математического знания. Онтологический статус математических объектов
Математику следует отделять от естественных наук. В отличие от др. наук математика не исследует саму действительность, она имеет дело с мыслительными конструкциями. Мат. не явл. Эмперической наукой

Математика в системе наук. Роль математики в развитии научного знания
Существует традиционное деление наук: 1. Эмпирическое знание (науки о фактах: физика, биология) – проверяется опытом 2. Формальное знание (математика, логика) – не проверяемо опыт

Эволюцио́нное уче́ние - система идей и концепций в биологии, утверждающих историческое прогрессивное развитие биосферы Земли, составляющих её биогеоценозов, а также отдельных таксонов и видов, которое может быть вписано в глобальный процесс эволюции вселенной. Первые эволюционные идеи выдвигались уже в античности, но только труды Чарлза Дарвина сделали эволюционизм фундаментальной концепцией биологии. Хотя единой и общепризнанной теории биологической эволюции до сих пор не создано, сам факт эволюции сомнению ученых не подвергается, так как имеется огромное число подтверждающих научных фактов и теорий.

Эволюционное учение зародилось в античных философских системах, идеи которых, в свою очередь, коренились в космологических мифах.

Анаксимандр считал, что Человек же будто бы возник из рыбы или похожего на рыбу животного. Несмотря на оригинальность, рассуждения Анаксимандра чисто умозрительны и не подкреплены наблюдениями. Другой античный мыслитель, Ксенофан, уделял наблюдениям больше внимания. Так, он отождествлял окаменелости, что находил в горах, с отпечатками древних растений и животных. Из этого он заключал, что суша некогда опускалась в море.

Единственным автором, у которого можно найти идею постепенного изменения организмов, был Платон. В своем диалоге «Государство» он выдвинул печально знаменитое предложение: улучшение породы людей путём отбора лучших представителей.

С подъёмом уровня научного знания после «веков мрака» раннего Средневековья эволюционные идеи вновь начинают проскальзывать в трудах учёных, теологов и философов. Альберт Великий впервые отметил самопроизвольную изменчивость растений, приводящую к появлению новых видов. Примеры, когда-то приведенные Теофрастом, он охарактеризовал как трансмутацию одного вида в другой. Сам термин, очевидно, был взят им из алхимии. В XVI веке были переоткрыты ископаемые организмы, но только к концу XVII века мысль, что это не «игра природы», не камни в форме костей или раковин, а остатки древних животных и растений, окончательно завладела умами.

Как видим, дальше высказывания разрозненных идей об изменчивости видов дело не заходило. Эта же тенденция продолжалась и с наступлением Нового времени. Так Френсис Бэкон, политик и философ предполагал, что виды могут изменяться, накапливая «ошибки природы». Этот тезис снова, как и в случае с Эмпедоклом, перекликается с принципом естественного отбора, но об общей теории нет пока и слова.

Идеи ограниченного эволюционизма были развиты Лейбницем, Карлом Линнеем и Бюффоном. Вычисленный Бюффоном возраст Земли составлял 75 тысяч лет. Описывая виды животных и растений, Бюффон заметил, что наряду с полезными признаками у них имеются и такие, которым невозможно приписать какую-либо полезность.

Ламарк считал, что Бог создал лишь материю и природу; все остальные неживые и живые объекты возникли из материи под воздействием природы. Он считал, что движущим фактором эволюции может быть «упражнение» или «неупражнение» органов, зависящее от адекватного прямого влияния среды.

Новый этап в развитии эволюционной теории наступил в 1859 году в результате публикации основополагающей работы Чарльза Дарвина. Основной движущей силой эволюции по Дарвину является естественный отбор. Отбор, действуя на особей, позволяет выживать и оставлять потомство тем организмам, которые лучше приспособлены для жизни в данном окружении.

Дарвин не только дал теоретические выкладки естественного отбора, но и показал на фактическом материале эволюцию видов в пространстве

В середине XX века на основе теории Дарвина сформировалась синтетическая теория эволюции (сокращённо СТЭ). СТЭ является в настоящее время наиболее разработанной системой представлений о процессах видообразования. Основой для эволюции по СТЭ является динамика генетической структуры популяций. Основным движущим фактором эволюции считается естественный отбор. Однако, наука не стоит на месте и, достигнутые передовыми теоретическими разработками современнейшие положения отличаются от первоначальных постулатов синтетической теории эволюции. Существует также группа эволюционных представлений, согласно которым видообразование (ключевой момент биологической эволюции) происходит быстро - за несколько поколений. При этом влияние каких-либо длительно действующих эволюционных факторов исключается (кроме отсекающего отбора). Подобные эволюционные воззрения называются сальтационизмом.

Первые проблески эволюционной мысли зарождаются в недрах диалектической натурфилософии античного времени, рассматривавшей мир в бесконечном движении, постоянном самообновлении на основе всеобщей связи и взаимодействия явлений и борьбы противоположностей.

Выразителем стихийного диалектического взгляда на природу был Гераклид, эфесский мыслитель (около 530-470 гг. до н. э.) его высказывания о том, что в природе все течет все изменяется в результате взаимопревращений первоэлементов космоса - огня, воды, воздуха, земли, содержали в зародыше идею всеобщего, не имеющего начала и конца развития материи.

Крупнейшие представители ионийской школы философов - Фалес из Милета считал, что все возникло из первичного материала - воды в ходе естественного развития. Анаксимандр исходил из того, что жизнь возникла из воды и земли под действием тепла. Согласно Анаксимену основным элементом является воздух, способный разрежаться и уплотняться, и этим процессом Анаксимен объяснял причину различий веществ. Он утверждал, что человек и животное произошли из земной слизи.

Представителями механистического материализма были философы более позднего периода (460-370 гг. До н. э.). По Демокриту мир состоял из бесчисленного множества неделимых атомов, расположенных в бесконечном пространстве. Атомы находятся в постоянном процессе случайного соединения и разъединения. Атомы находятся в случайном движении и различны по величине, массе и форме, то тела, появившиеся вследствие скопления атомов, могут быть также различными. Более легкие из них поднялись вверх и образовали огонь и небо, более тяжелые, опустившись, образовали воду и землю, в которых и зародились различные живые существа: рыбы, наземные животные, птицы.

Механизм происхождения живых существ первым пытался истолковать древнегреческий философ Эмпедокл (490-430 гг. до н. э.). Развивая мысль Гераклида о первичных элементах, он утверждал, что их смешение создает множество комбинаций, одни из которых - наименее удачныеразрушаются, а другие - гармонирующие сочетания -сохраняются. Комбинации этих элементов и создают органы животных. Соединение органов друг с другом порождает целостные организмы. Примечательной была мысль, что сохранились в природе только жизнеспособные варианты из множества неудачных комбинаций.

Зарождение биологии как науки связано с деятельностью великого мыслителя из Греции Аристотеля (387-322 гг. до н. э.). В своих капитальных трудах он изложил принципы классификации животных, провел сравнение различных животных по их строению, заложил основы античной эмбриологии.

В работе «О частях животных» приводится мысль о взаимосвязи (корреляции) органов, о том, что изменение одного органа влечет за собой изменение другого, связанного с ним функциональными отношениями.

В труде «Возникновение животных» Аристотель разработал сравнительно анатомический метод и применил его в эмбриологических исследованиях. Он обратил внимание на то, что у разных организмов эмбриогенез (развитие эмбриона) проходит через последовательный ряд: в начале закладываются наиболее общие признаки, затем видовые и, наконец, индивидуальные. Обнаружив большое сходство начальных стадий в эмбриогенезе представителей разных групп животных, Аристотель пришел к мысли о возможности единства их происхождения. Этим выводом Аристотель предвосхитил идеи зародышевого сходства и эпигенеза (эмбриональных новообразований), выдвинутые и экспериментально обоснованные в середине XVIII в.

Таким образом, воззрения античных философов содержали ряд важных элементов эволюционизма: во-первых, мысль о естественном возникновении живых существ и их изменении в результате борьбы противоположностей и выживании удачных вариантов, во-вторых, идею ступенчатого усложнения организации живой природы; в-третьих, представление о целостности организма (принцип корреляции) и об эмбриогенезе как процессе новообразования.

Отмечая значение античных мыслителей в развитии философии, Ф. Энгельс писал: «. в многообразных формах греческой философии уже имеются в зародыше, и процессе возникновения почти все позднейшие типы мировоззрений».

Последующий период, вплоть до XVI в., для развития эволюционной мысли почти ничего не дал. В эпоху Возрождения резко усиливается интерес к античной науке и начинается накопление знаний, сыгравших значительную роль в становлении эволюционной идеи.

Исключительной заслугой учения Дарвина явилось то, что оно дало научное, материалистическое объяснение возникновению высших животных и растений путем последовательного развития живого мира, что оно привлекло для разрешения биологических проблем исторический метод исследования. Однако к самой проблеме происхождения жизни у многих естествоиспытателей и после Дарвина сохранился прежний метафизический подход. Широко распространенный в научных кругах Америки и Западной Европы менделизм-морганизм выдвинул положение, согласно которому наследственностью и всеми другими свойствами жизни обладают частицы особенного генного вещества, сконцентрированного в хромосомах клеточного ядра. Эти частицы будто бы когда-то внезапно возникли на Земле и сохранили свое жизнеопределяющее строение в основном неизменным в течение всего развития жизни. Таким образом, проблема происхождения жизни, с точки зрения менделистов-морганистов, сводится к вопросу, как могла сразу внезапно возникнуть наделенная всеми свойствами жизни частица генного вещества.

Большинство высказывающихся по этому вопросу зарубежных авторов (например, Девилье во Франции или Александер в Америке) подходит к нему весьма упрощенно. По их мнению, генная молекула возникает чисто случайно, благодаря «счастливому» сочетанию атомов углерода, водорода, кислорода, азота и фосфора, которые «сами собой» сложились в чрезвычайно сложно построенную молекулу генного вещества, сразу же получившую все атрибуты жизни.

Но такого рода «счастливый случай» настолько исключителен и необычен, что он мог якобы осуществиться всего лишь раз за время существования Земли. В дальнейшем шло только постоянное размножение этой единожды возникшей, вечной и неизменной генной субстанции.

Это «объяснение», конечно, ничего по существу не объясняет. Характерной особенностью всех без исключения живых существ является то, что их внутренняя организация чрезвычайно хорошо, совершенно приспособлена к осуществлению определенных жизненных явлений: питания, дыхания, роста и размножения в данных условиях существования. Как же в результате чистой случайности могла возникнуть эта внутренняя приспособленность, которая так характерна для всех, даже наипростейших живых форм?

Антинаучно отрицая закономерность процесса происхождения жизни, рассматривая это важнейшее в жизни нашей планеты событие как случайное, сторонники указанных взглядов ничего не могут ответить на этот вопрос и неизбежно скатываются к самым идеалистическим, мистическим представлениям о первичной творческой воле божества и об определенном плане создания жизни.

Так в недавно вышедшей книжке Шредингера «Что такое жизнь с точки зрения физики», в книге американского биолога Александера «Жизнь, ее природа и происхождение» и в ряде других произведений буржуазных авторов мы находим прямое утверждение того, что жизнь могла возникнуть только в результате творческой воли божества. Менделизм-морганизм пытается идеологически разоружить ученых биологов в их борьбе с идеализмом. Он стремится доказать, что вопрос о происхождении жизни-эта важнейшая мировоззренческая проблема - неразрешим с материалистических позиций. Однако такого рода утверждение насквозь ложно. Оно легко опровергается, если мы подойдем к интересующему нас вопросу с позиций единственно правильной, подлинно научной философии - с позиций диалектического материализма.

Жизнь как особая форма существования материи характеризуется двумя отличительными свойствами - самовоспроизведением и обменом веществ с окружающей средой . На свойствах саморепродукции и обмена веществ строятся все современные гипотезы возникновения жизни. Наиболее широко признанные гипотезы коацерватная и генетическая.

1.2.3 Классическая наука. Этап механистического естествознания.

Зарождение и формирование эволюционных идей

Классическая наука. Большинство историков науки считает, что наука, как своеобразная форма познания – специфический тип производства знаний и социальный институт, возникла в Европе, в Новое время, в эпоху становления капиталистического способа производства и дифференциации единого ранее знания на философию и науку. Наука начинает развиваться относительно самостоятельно. Период становления классической науки начинается примерно в XVI – XVII вв. и завершается на рубеже XIX – XX вв. Его, в свою очередь, можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX – начала XX в.).

Этап механистического естествознания. Бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) в период перехода Западной Европы, от феодализма к капитализму потребовало решения ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую

значимость приобрела механика. Укрепляется идея о возможности изменения, переделывания природы, на основе познания ее закономерностей, все более осознается практическая ценность научного знания. Механистическое естествознание начинает развиваться ускоренными темпами.

Этап механистического естествознания, в свою очередь, можно условно подразделить на две ступени – доньютоновскую и ньютоновскую, связанные соответственно с двумя глобальными научными революциями*, происходившими в XVI – XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Первую научную революцию, произошедшую в период Возрождения, связывают с возникновением гелиоцентрического учения Н. Коперника (1473–1543). Она ознаменовала конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов. Он отстаивал тезис о бесконечности Вселенной, о бесчисленном количестве миров, подобных Солнечной системе. Кроме того, Коперник высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам, и указал на ограниченность чувственного познания. Это учение разрушало привычную религиозную картину мира.

С теориями Галилея, Кеплера и Ньютона связывают вторую научную революцию – посленьютоновскую ступень развития механистического естествознания. В учении Г. Галилея (1564–1642) уже были заложены достаточно прочные основы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки. Галилей впервые ввел в познание мысленный эксперимент, опирающийся на строгое количественно-математическое описание и ставший характерной особенностью научного познания. Галилей показал, что наука без мысленного конструирования, без идеализации, без абстракций, без «обобщающих резолюций», опирающихся на факты – это все что угодно, но только не наука. Галилей первым показал, что опытные данные в своей первозданности вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках. Иначе говоря, опыт не может не предваряться определенными теоретическими допущениями, не может не быть «теоретически нагруженным».

Иоганн Кеплер (1571–1630) установил законы движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др. Однако Кеплер не объяснил причины движения планет, ибо динамика – учение о силах и их взаимодействии – была создана позже Ньютоном.

* На роли научных революций в развитии науки мы специально остановимся в разделе 2.1.2 при рассмотрении вопроса о развитии научного знания.

Следует отметить, что в XVII в. происходит закрепление статуса науки в качестве особого социального института. В 1662 г. возникает Лондонское королевское общество, которое объединило ученых-любителей в добровольную организацию с определенным уставом, санкционированным высшей государственной властью – королем. В уставе Лондонского королевского общества, записано, что его целью является «совершенствование знания о естественных предметах и всех полезных искусствах с помощью экспериментов …». Королевское общество стремилось пропагандировать и поддерживать эмпиризм. Выдвинутая кем-либо гипотеза подвергалась проверке на опыте, в эксперименте и либо принималась и сохранялась, либо неминуемо отвергалась, если свидетельство эмпирического факта было для нее неблагоприятно. Члены общества отвергали работы, выполненные по другим нормам.

Отдельные исследователи связывают рождение современной науки с появлением университетских исследовательских лабораторий и с проведением исследований, имеющих важное прикладное значение. Впервые это было осуществлено в Берлинском университете под руководством Вильгельма Гумбольдта.

В конце XVI – начале XVII в. происходит буржуазная революция в Нидерландах, а с середины XVII в. – в Англии, наиболее развитой в промышленном отношении европейской стране. Буржуазные революции дали толчок для развития промышленности и торговли, строительства, горного и военного дела, мореплавания и т. п. Расширение торговых связей, открытие новых рынков сырья и сбыта товаров способствовали развитию таких дисциплин, как астрономия, математика и механика. Плодом революции в мировоззрении явилось новое отношение к науке, подрыв доверия к церкви и к трудам древних ученых, авторитет которых сковывал умы, широкое внедрение в науку метода исследования, основывавшегося на точном наблюдении и опыте.

В период становления экспериментально-математического естествознания постепенно складываются в самостоятельные отрасли знания астрономия, механика, физика, химия и другие частные науки. В отличие от традиционной (особенно схоластической) философии наука Нового времени по-новому поставила вопросы о специфике научного знания и своеобразии его формирования, о задачах познавательной деятельности и ее методах, о месте и роли науки в жизни общества, о необходимости господства человека над природой на основе знания ее законов.

Вторая научная революция завершилась творчеством Ньютона (1643–1727), научное наследие которого чрезвычайно глубоко и разнообразно. Главный труд Ньютона – «Математические начала натуральной философии» (1687). В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.). Кроме того, Ньютон, независимо от Лейбница, создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии.

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов, т. е. «прийти к законам, имеющим неограниченную силу во всем космосе»;

6) «использовать силы природы и подчинить их нашим целям в технике».

С помощью этого метода были сделаны многие важные научные открытия. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный арсенал самых различных методов: наблюдение, эксперимент, индукция, дедукция, анализ, синтез, математические методы, идеализация и др. Все чаще стали говорить о необходимости сочетания различных методов.

Построенный Ньютоном фундамент оказался исключительно плодотворным и до конца XIX в. считался незыблемым.

Несмотря на ограниченность уровня естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.

Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограниченностей. Механистичность, метафизичность мышления Ньютона проявляется в его утверждении о том, что материя – инертная субстанция, обреченная на извечное повторение хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время – чистая длительность, а пространство – пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая недостаточность своей картины мира, Ньютон вынужден был апеллировать к идеям божественного творения, отдавая дань религиозно-идеалистическим представлениям.

Тем не менее, этот период характеризуется развитием механики, математики и стремлением к использованию количественных методов во многих областях научного познания. Одним из ведущих приемов исследования становятся измерения.

Пионерами, провозгласившими измерение основой точных знаний, в том числе и применительно к исследованию живой природы, были Г. Галилей (1564–1672), Санторио (1561–1636), Д. А. Борелли (1608–1679).

Санторио – автор труда «О статической медицине» и других сочинений, изобретает измерительные приборы, измеряет обмен веществ, старается установить норму и патологию в развитии организма. Галилей и его ученик Борелли изучают механику движения животных, устанавливают зависимость между их двигательными функциями и абсолютными размерами тела.

К этому времени относится и становление математической статистики. Известная заслуга в этом принадлежит английской школе «политических арифметиков» во главе с Петти (1623–1687).

Небывалые успехи механики породили представление о принципиальной сводимости всех процессов в мире к механическим. Поэтому и механика прямо отождествлялась с точным естествознанием. Ее задачи и сфера применения казались безграничными.

Так, английский химик Р. Бойль (1627–1691) выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике.

В 1628 г. английский врач, анатом и физиолог Вильям Гарвей (1578–1657) опубликовал свой труд «Анатомическое исследование о движении сердца и крови у животных». В этой работе впервые было дано правильное представление о большом и малом кругах кровообращения и о сердце как двигателе крови в организме.

Большое значение для развития физиологии имело открытие рефлекса французским философом, математиком и физиологом Рене Декартом (1596–1650), хотя сам процесс рефлекса в его представлении имел механическое объяснение.

Ламарк, пытаясь найти естественные причины развития организмов, также опирался на вариант механической картины мира.

Механицизм проявился в трудах физиологов, например, французский философ и врач Ж. Ламетри (1709–1751) утверждал, что организм человека является самозаводящейся машиной. Д. А. Борелли, автор сочинения «О движении животных» утверждал, что «действия животных совершаются вследствие, посредством и на основании механических явлений».

Химик А. Л. Лавуазье (1743–1794) и математик П. С. Лаплас (1749–1827) провели первые измерения энергетических затрат организма.

В середине XVII в. работами Пьера Ферма (1601–1665), Блеза Паскаля (1623–1662) и Христиана Гюйгенса (1629–1695) были положены начала теории вероятностей. В дальнейшем, благодаря трудам А. Муавра (1667–1754) и особенно П. С. Лапласа, К. Гаусса (1777–1855), Пуассона (1781–1840) и других математиков, открывших законы распределения случайных величин, теория вероятностей становится на прочную научную основу и находит применение в решении ряда практических задач. Первым, кто удачно соединил эмпирические методы антропологии и социальной статистики с математической теорией вероятностей, был ученик Лапласа бельгиец Адольф Кетле (1796–1874). В 1835 г. вышла в свет его книга «О человеке и развитии его способностей или опыт социальной физики», в которой на большом статистическом материале было показано, что различные физические признаки человека и даже его поведение подчиняются законам распределения вероятностей. В «Антропометрии» (1871) Кетле отметил, что описанные им закономерности распространяются не только на человека, но и на все другие живые существа. Кетле заложил основы биометрии. Математический аппарат этой науки создали последователи английской школы биометриков Ф. Гальтон (1822–1911) и К. Пирсон (1857–1936). В XX в. появились классические труды В. Госсета (1876–1937), печатавшегося под псевдонимом «Стьюдент», Р. А. Фишера (1890–1967) и других. С именем Стьюдента связано обоснование так называемой «теории малой выборки», открывшей новую страницу в истории биометрии. Р. Фишер разработал метод дисперсионного анализа, нашедший применение не только в биологии, но и в технике. Большой вклад в развитие математических методов, применяемых в биологии, внесли отечественные ученые: В. И. Романовский (1879–1954), С. И. Бернштейн (1880–1969), А. Я. Хинчин (1894–1959), А. Н. Колмогоров (1903–1987), В. С. Немчинов (1894–1946), М. В. Игнатьев (1894–1959) и многие другие. Много сделали наши ученые в области биометрической подготовки биологов и специалистов, смежных с биологией дисциплин: Поморский, (1893–1954); П. В. Терентьев (1903–1970); Ю. А. Филипченко (1882–1930); С. С. Четвериков (1880–1959) и др.

Прогресс опытного знания, экспериментальной науки, наблюдавшийся в Новое время, привел к замене схоластического метода мышления новым методом познания, обращенным к реальному миру. Возрождались и развивались принципы материализма и элементы диалектики, ускоренными темпами развивался процесс размежевания между философией и частными науками. Однако по мере экспансии механической картины мира на новые предметные области наука все чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые все труднее было согласовывать с принципами механической картины мира. Она теряла свой универсальный характер, расщепляясь на ряд частнонаучных картин, начался процесс расшатывания механической картины мира. В середине XIX в. она окончательно утратила свой общенаучный статус.

Зарождение и формирование эволюционных идей. С конца XVIIIв. в естественных науках накапливались факты и эмпирический материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел главным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с исследованиями в области электрического и магнитного полей английских ученых М. Фарадея (1791–1867) и Д. Максвелла (1831–1879). Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, выдвинул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных волн, выдвинул идею об электромагнитной природе света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле.

Поскольку электромагнитные процессы не сводились к механическим, стало формироваться убеждение в том, что основные законы мироздания – не законы механики, а законы электродинамики. Работы в области электромагнетизма сильно подорвали механическую картину мира и по существу положили начало ее крушению. С тех пор механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности.

Второе направление «подрыва» механической картины мира связано работами английского геолога Ч. Лайеля (1797–1875) и французских биологов Ж. Б. Ламарка (1744–1829) и Ж. Кювье (1769–1832).

Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию.

В первые десятилетия XIX в. было фактически подготовлено «свержение» метафизического способа мышления, этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Ч. Дарвиным (1809–1882) эволюционной теории.

Теория клетки, созданная немецкими учеными М. Шлейденом (1804–1881) и Т. Шванном (1810–1882) в 1838–1839 гг., доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития живой природы.

Огромное значение для развития естествознания имели открытие М. В. Ломоносовым (1711–1765) закона сохранения вещества и движения, и последовавшее за ним установление Ю. Майером (1814–1878), Д. Джоулем (1818–1889) и Г. Гельмгольцем (1821–1894) закона сохранения и превращения энергии. Было доказано, что признававшиеся ранее изолированными так называемые «силы» – теплота, свет, электричество, магнетизм и т. п., - взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия, как общая количественная мера различных форм движения материи, не возникает из ничего и не исчезает, а может только переходить из одной формы в другую. Это фундаментальное открытие помимо общего мировоззренческого значения оказало влияние и на развитие физиологии растений и человека. Стал понятным круговорот энергии в природе, в растительном организме. Как показал К. А. Тимирязев (1843–1920), свободная энергия солнечных лучей превращается в химическую энергию сложных органических соединений, образующихся в зеленом растении в процессе фотосинтеза; в животном организме химическая энергия органических соединений, полученных с пищей, при их расщеплении освобождается и превращается в кинетические виды энергии: в тепловую, механическую, электрическую.

Эволюционная теория Ч. Дарвина (1809–1882), окончательно оформленная в его главном труде «Происхождение видов путем естественного отбора» (1859), показала, что растительные и животные организмы (включая человека) – не созданы богом, а являются результатом естественного развития (эволюции) органического мира и ведут свое начало от немногих простейших существ, которые произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции – наследственность и изменчивость – и движущие факторы эволюции – естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений. Впоследствии теорию Дарвина подтвердила генетика, показавшая механизм изменений, на основе которых и способна работать теория естественного отбора. В середине XX в., особенно в связи с открытием в 1953 г. Ф. Криком (1916–2004) и Дж. Уотсоном (рожд. 1928) структуры ДНК, сформировалась так называемая систематическая теория эволюции, объединившая классический дарвинизм и достижения генетики.

Во второй половине XIX века благодаря работам химиков было изучено количество тепла, освобождаемое при сжигании вне организма основных питательных веществ, иначе говоря, их калорическая ценность. Одновременно физиологами были разработаны способы, дающие возможность учета количества энергии, освобождаемой организмом при покое и работе разной тяжести.

Значительные результаты были получены благодаря созданию методики электрического раздражения и графической регистрации деятельности органов с помощью специальных приборов: кимографа, миографа, сфигмографа и др. В этом отношении особенно велики заслуги немецкого физиолога Э. Дюбуа-Реймона (1818–1896), подробно разработавшего методику электрического раздражения живых тканей. Исследования электрических явлений, наблюдаемых в организме, начатые Л. Гальвани (1773–1798) и А. Вольта (1745–1827) и продолженные Н. Е. Введенским (1852–1922), приблизили к пониманию физиологического процесса возбуждения. При этом И. М. Сеченовым (1829–1905) и В. Я. Данилевским (1852–1939) были впервые исследованы электрические явления в нервных центрах, которые привлекли особый интерес физиологов в XX столетии. Выдающееся значение имели труды И. М. Сеченова, открывшего 1862 г. процесс торможения в центральной нервной системе, а в 1863 г. опубликовавшего гениальное произведение «Рефлексы головного мозга».

Повышения информационной

... (от 01.12.2007 № 309); «О... научно -исследовательская деятельность : выявлять актуальные вопросы в сфере физической культуры и спорта ; проводить научные ... спорт , 1987. - 240с. Зданович И.А. Спортивно-оздоровительный туризм. - изд. 2-е, пере-раб.и доп. - Омск ...

  • Алтайского края управление алтайского края по физической культуре и спорту

    Документ

    Спортивной деятельности и физкультурно-оздоровительных услуг; Федеральному агентству по физической культуре и спорту совместно... данных по физической культуре и спорту за 2006-2007 г.г. №/П Основные показатели физической культуры и спорта 2006 2007 + - ...

  • Первые проблески эволюционной мысли зарождаются в недрах диалектической натурфилософии античного времени, рассматривавшей мир в бесконечном движении, постоянном самообновлении на основе всеобщей связи и взаимодействия явлений и борьбы противоположностей. Выразителем стихийного диалектического взгляда на природу был Гераклид, эфесский мыслитель (около 530-470 гг. до н. э.) его высказывания о том, что в природе все течет все изменяется в результате взаимопревращений первоэлементов космоса - огня, воды, воздуха, земли, содержали в зародыше идею всеобщего, не имеющего начала и конца развития материи. Взгляды крупнейших представителей ионийской школы философов: 1) Фалес из Милета считал, что все возникло из первичного материала - воды в ходе естественного развития. 2) Анаксимандр исходил из того, что жизнь возникла из воды и земли под действием тепла. 3) Согласно Анаксимену основным элементом является воздух, способный разрежаться и уплотняться, и этим процессом Анаксимен объяснял причину различий веществ. Он утверждал, что человек и животное произошли из земной слизи. Представителями механистического материализма были философы более позднего периода (460-370 гг. до н. э.). По Демокриту мир состоял из бесчисленного множества неделимых атомов, расположенных в бесконечном пространстве. Атомы находятся в постоянном процессе случайного соединения и разъединения. Атомы находятся в случайном движении и различны по величине, массе и форме, то тела, появившиеся вследствие скопления атомов, могут быть также различными. Более легкие из них поднялись вверх и образовали огонь и небо, более тяжелые, опустившись, образовали воду и землю, в которых и зародились различные живые существа: рыбы, наземные животные, птицы. Механизм происхождения живых существ первым пытался истолковать древнегреческий философ Эмпедокл (490-430 гг. до н. э.). Развивая мысль Гераклида о первичных элементах, он утверждал, что их смешение создает множество комбинаций, одни из которых - наименее удачные - разрушаются, а другие - гармонирующие сочетания - сохраняются. Комбинации этих элементов и создают органы животных. Соединение органов друг с другом порождает целостные организмы. Примечательной была мысль, что сохранились в природе только жизнеспособные варианты из множества неудачных комбинаций. Зарождение биологии как науки связано с деятельностью великого мыслителя из Греции Аристотеля (387-322 гг. до н. э.). В своих капитальных трудах он изложил принципы классификации животных, провел сравнение различных животных по их строению, заложил основы античной эмбриологии. В работе «О частях животных» приводится мысль о взаимосвязи (корреляции) органов, о том, что изменение одного органа влечет за собой изменение другого, связанного с ним функциональными отношениями. В труде «Возникновение животных» Аристотель разработал сравнительно анатомический метод и применил его в эмбриологических исследованиях. Он обратил внимание на то, что у разных организмов эмбриогенез (развитие эмбриона) проходит через последовательный ряд: в начале закладываются наиболее общие признаки, затем видовые и, наконец, индивидуальные. Обнаружив большое сходство начальных стадий в эмбриогенезе представителей разных групп животных, Аристотель пришел к мысли о возможности единства их происхождения. Этим выводом Аристотель предвосхитил идеи зародышевого сходства и эпигенеза (эмбриональных новообразований), выдвинутые и экспериментально обоснованные в середине XVIII в. Таким образом, воззрения античных философов содержали ряд важных элементов эволюционизма: во-первых, мысль о естественном возникновении живых существ и их изменении в результате борьбы противоположностей и выживании удачных вариантов, во-вторых, идею ступенчатого усложнения организации живой природы; в-третьих, представление о целостности организма (принцип корреляции) и об эмбриогенезе как процессе новообразования. Отмечая значение античных мыслителей в развитии философии, Ф. Энгельс писал: «.в многообразных формах греческой философии уже имеются в зародыше, и процессе возникновения почти все позднейшие типы мировоззрений». Последующий период, вплоть до XVI в., для развития эволюционной мысли почти ничего не дал. В эпоху Возрождения резко усиливается интерес к античной науке и начинается накопление знаний, сыгравших значительную роль в становлении эволюционной идеи. Исключительной заслугой учения Дарвина явилось то, что оно дало научное, материалистическое объяснение возникновению высших животных и растений путем последовательного развития живого мира, что оно привлекло для разрешения биологических проблем исторический метод исследования. Однако к самой проблеме происхождения жизни у многих естествоиспытателей и после Дарвина сохранился прежний метафизический подход. Широко распространенный в научных кругах Америки и Западной Европы менделизм-морганизм выдвинул положение, согласно которому наследственностью и всеми другими свойствами жизни обладают частицы особенного генного вещества, сконцентрированного в хромосомах клеточного ядра. Эти частицы будто бы когда-то внезапно возникли на Земле и сохранили свое жизнеопределяющее строение в основном неизменным в течение всего развития жизни. Таким образом, проблема происхождения жизни, с точки зрения менделистов-морганистов, сводится к вопросу, как могла сразу внезапно возникнуть наделенная всеми свойствами жизни частица генного вещества. Большинство высказывающихся по этому вопросу зарубежных авторов (например, Девилье во Франции или Александер в Америке) подходит к нему весьма упрощенно. По их мнению, генная молекула возникает чисто случайно, благодаря «счастливому» сочетанию атомов углерода, водорода, кислорода, азота и фосфора, которые «сами собой» сложились в чрезвычайно сложно построенную молекулу генного вещества, сразу же получившую все атрибуты жизни. Но такого рода «счастливый случай» настолько исключителен и необычен, что он мог якобы осуществиться всего лишь раз за время существования Земли. В дальнейшем шло только постоянное размножение этой единожды возникшей, вечной и неизменной генной субстанции. Это «объяснение», конечно, ничего по существу не объясняет. Характерной особенностью всех без исключения живых существ является то, что их внутренняя организация чрезвычайно хорошо, совершенно приспособлена к осуществлению определенных жизненных явлений: питания, дыхания, роста и размножения в данных условиях существования. Как же в результате чистой случайности могла возникнуть эта внутренняя приспособленность, которая так характерна для всех, даже наипростейших живых форм? Антинаучно отрицая закономерность процесса происхождения жизни, рассматривая это важнейшее в жизни нашей планеты событие как случайное, сторонники указанных взглядов ничего не могут ответить на этот вопрос и неизбежно скатываются к самым идеалистическим, мистическим представлениям о первичной творческой воле божества и об определенном плане создания жизни. Так в недавно вышедшей книжке Шредингера «Что такое жизнь с точки зрения физики», в книге американского биолога Александера «Жизнь, ее природа и происхождение» и в ряде других произведений буржуазных авторов мы находим прямое утверждение того, что жизнь могла возникнуть только в результате творческой воли божества. Менделизм-морганизм пытается идеологически разоружить ученых биологов в их борьбе с идеализмом. Он стремится доказать, что вопрос о происхождении жизни - эта важнейшая мировоззренческая проблема - неразрешим с материалистических позиций. Однако такого рода утверждение насквозь ложно. Оно легко опровергается, если мы подойдем к интересующему нас вопросу с позиций единственно правильной, подлинно научной философии - с позиций диалектического материализма. Жизнь как особая форма существования материи характеризуется двумя отличительными свойствами - самовоспроизведением и обменом веществ с окружающей средой. На свойствах саморепродукции и обмена веществ строятся все современные гипотезы возникновения жизни. Наиболее широко признанные гипотезы коацерватная и генетическая. Коацерватная гипотеза. В 1924 г. А. И. Опарин впервые сформулировал основные положения концепции предбиологической эволюции и затем, опираясь на эксперименты Бунгенберга де Йонга, развил эти положения в коацерватной гипотезе происхождения жизни. Основу гипотезы составляет утверждение, что начальные этапы биогенеза были связаны с формированием белковых структур. Первые белковые структуры (протобионты, по терминологии Опарина) появились в период, когда молекулы белков отграничивались от окружающей среды мембраной. Эти структуры могли возникнуть из первичного «бульона» благодаря коацервации - самопроизвольному разделению водного раствора полимеров на фазы с различной их концентрацией. Процесс коацервации приводил к образованию микроскопических капелек с высокой концентрацией полимеров. Часть этих капелек поглощали из среды низкомолекулярные соединения: аминокислоты, глюкозу, примитивные катализаторы. Взаимодействие молекулярного субстрата и катализаторов уже означало возникновение простейшего метаболизма внутри протобионтов. Обладавшие метаболизмом капельки включали в себя из окружающей среды новые соединения и увеличивались в объеме. Когда коацерваты достигали размера, максимально допустимого в данных физических условиях, они распадались на более мелкие капельки, например, под действием волн, как это происходит при встряхивании сосуда с эмульсией масла в воде. Мелкие капельки вновь продолжали расти и затем образовывать новые поколения коацерватов. Постепенное усложнение протобионтов осуществлялось отбором таких коацерватных капель, которые обладали преимуществом в лучшем использовании вещества и энергии среды. Отбор как основная причина совершенствования коацерватов до первичных живых существ - центральное положение в гипотезе Опарина. Генетическая гипотеза. Согласно этой гипотезе, вначале возникли нуклеиновые кислоты как матричная основа синтеза белков. Впервые ее выдвинул в 1929 г. Г. Мёллер. Экспериментально доказано, что несложные нуклеиновые кислоты могут реплицироваться и без ферментов. Синтез белков на рибосомах идет при участии транспортной (т-РНК) и рибосомной РНК (р-РНК). Они способны строить не просто случайные сочетания аминокислот, а упорядоченные полимеры белков. Возможно, первичные рибосомы состояли только из РНК. Такие безбелковые рибосомы могли синтезировать упорядоченные пептиды при участии молекул т-РНК, которые связывались с р-РНК через спаривание оснований. На следующей стадии химической эволюции появились матрицы, определявшие последовательность молекул т-РНК, а тем самым и последовательность аминокислот, которые связываются молекулами т-РНК. Способность нуклеиновых кислот служить матрицами при образовании комплементарных цепей (например, синтез и-РНК на ДНК) - наиболее убедительный аргумент в пользу представлений о ведущем значении в процессе биогенеза наследственного аппарата и, следовательно, в пользу генетической гипотезы происхождения жизни. Основные этапы биогенеза. Процесс биогенеза включал три основных этапа: возникновение органических веществ, появление сложных полимеров (нуклеиновых кислот, белков, полисахаридов), образование первичных живых организмов. Первый этап - возникновение органических веществ. Уже в период формирования Земли образовался значительный запас абиогенных органических соединений. Исходными для их синтеза были газообразные продукты докислородной атмосферы и гидросферы (СН4, СО2, H2О, Н2, NH3, NО2). Именно эти продукты используются и в искусственном синтезе органических соединений, составляющих биохимическую основу жизни. Экспериментальный синтез белковых компонентов - аминокислот в попытках создать живое «в пробирке» начался с работ С. Миллера (1951-1957). С. Миллер провел серию опытов по воздействию искровыми электрическими разрядами на смесь газов СН4, NH3, H2 и паров воды, в результате чего обнаружил аминокислоты аспарагин, глицин, глютамин. Полученные Миллером данные подтвердили советские и зарубежные ученые. Наряду с синтезом белковых компонентов экспериментально синтезированы нуклеиновые компоненты - пуриновые и пиримидиновые основания и сахара. При умеренном нагревании смеси цианистого водорода, аммиака и воды Д. Оро получил аденин. Он же синтезировал урацил при взаимодействии аммиачного раствора мочевины с соединениями, возникающими из простых газов под влиянием электрических разрядов. Из смеси метана, аммиака и воды под действием ионизирующей радиации образовывались углеводные компоненты нуклеотидов - рибоза и дезоксирибоза. Опыты с применением ультрафиолетового облучения показали возможность синтеза нуклеотидов из смеси пуриновых оснований, рибозы или дезоксирибозы и полифосфатов. Нуклеотиды, как известно, являются мономерами нуклеиновых кислот. Второй этап - образование сложных полимеров. Этот этап возникновения жизни характеризовался абиогенным синтезом полимеров, подобных нуклеиновым кислотам и белкам. С. Акабюри впервые синтезировал полимеры протобелков со случайным расположением аминокислотных остатков. Затем на куске вулканической лавы при нагревании смеси аминокислот до 100°С С. Фок е получил полимер с молекулярной массой до 10000, содержащий все включенные в опыт типичные для белков аминокислоты. Этот полимер Фок е назвал протеиноидом. Искусственно созданным протеиноидам были характерны свойства, присущие белкам современных организмов: повторяющаяся последовательность аминокислотных остатков в первичной структуре и заметная ферментативная активность. Полимеры из нуклеотидов, подобные нуклеиновым кислотам организмов, были синтезированы в лабораторных условиях, не воспроизводимых в природе. Г. Корнберг показал возможность синтеза нуклеиновых кислот in vitro; для этого требовались специфические ферменты, которые не могли присутствовать в условиях примитивной Земли. В начальных процессах биогенеза большое значение имеет химический отбор, который является фактором синтеза простых и сложных соединений. Одной из предпосылок химического синтеза выступает способность атомов и молекул к избирательности при их взаимодействиях в реакциях. Например, галоген хлор или неорганические кислоты предпочитают соединяться с легкими металлами. Свойство избирательности определяет способность молекул к самосборке, что было показано С. Фоксом в сложных макромолекул характеризуется строгой упорядоченностью, как по числу мономеров, так и по их пространственному расположению. Способность макромолекул к самосборке А. И. Опарин рассматривал в качестве доказательства выдвинутого им положения, что белковые молекулы коацерватов могли синтезироваться и без матричного кода. Третий этап - появление первичных живых организмов. От простых углеродистых соединений химическая эволюция привела к высокополимерным молекулам, которые составили основу формирования примитивных живых существ. Переход от химической эволюции к биологической характеризовался появлением новых качеств, отсутствующих на химическом уровне развития материи. Главными из них были внутренняя организация протобионтов, приспособленная к окружающей среде благодаря устойчивому обмену веществ и энергии, наследование этой организации на основе репликации генетического аппарата (матричного кода). А. И. Опарин с сотрудниками показал, что устойчивым обменом веществ с окружающей средой обладают коацерваты. При определенных условиях концентрированные водные растворы полипептидов, полисахаридов и РНК образуют коацерватные капельки объемом от 10-7 до 10-6 см3, которые имеют границу раздела с водной средой. Эти капельки обладают способностью ассимилировать из окружающей среды вещества и синтезировать из них новые соединения. Так, коацерваты, содержащие фермент глюкогенфосфорилазу, впитывали из раствора глюкозо-1-фосфат и синтезировали полимер, сходный с крахмалом. Подобные коацерватам самоорганизующиеся структуры описал С. Фоке и назвал их микросферами. При охлаждении нагретых концентрированных растворов протеиноидов самопроизвольно возникали сферические капельки диаметром около 2 мкм. При определенных значениях рН среды микросферы образовывали двухслойную оболочку, напоминающую мембраны обычных клеток. Они обладали также способностью делиться почкованием. Хотя микросферы не содержат нуклеиновых кислот и в них отсутствует ярко выраженный метаболизм, они рассматриваются в качестве возможной модели первых самоорганизующихся структур, напоминающих примитивные клетки. Клетки - основная элементарная единица жизни, способная к размножению, в ней протекают все главные обменные процессы (биосинтез, энергетический обмен и др.). Поэтому возникновение клеточной организации означало появление подлинной жизни и начало биологической эволюции.